

Surface Studies of Hydrogen Isotopes on Tungsten

R. Bastasz, M. D. Coventry*, J. A. Whaley Sandia National Laboratories, Livermore, CA *University of Illinois, Champaign, IL

Outline

Background and motivation introduction:

H isotope recycling from W

results: Recoil energy measurements

Desorption cross section measurements

analysis: Interpreting the recoil energy spectrum.

conclusions: Implications for H isotope recycling from W.

Background

- Tungsten readily adsorbs molecular hydrogen.
- Tungsten is a high recycling material.
- The energetic portion of the recycle flux consists of two components:
 - 1) reflection of incident hydrogen isotopes
 - 2) recoil of adsorbed hydrogen isotopes.
- The reflection component has been well studied with both modeling and experiment.
- The recoil component has received less attention and is the subject of this study.

We measured the energy of H and D recoil ions ejected from clean W surfaces.

DRS: direct recoil spectroscopy

$$2\cos\theta_r = (1+A)\sqrt{E_r/A}$$

(for elastic recoil)

Ion energy spectra identify surface atoms.

DRS detects trace levels of adsorbates.

H(ads) and D(ads) are clearly distinguished.

H isotopes rapidly exchange on W surfaces.

Desorption of D(ads) on W monitored by D recoil and W scattering signals

- Data recorded from the time that the D₂ feed to the chamber was cut off
- Background (zero coverage) signal present

Signal of Interest'

 $1 \text{ keV Ne}^+ \rightarrow \text{W} + \text{D (ads)}$

$$\alpha = 65^{\circ}$$
 $\theta = 60^{\circ}$

Log[Relative Coverage] vs. Fluence Plot Exponential decay constant indicates cross section

Angular Dependence of σ_{des}

Energy-angle plot for a sputtered W surface

Energy-angle plot for a W surface exposed to D₂

H and D recoils show high-energy structure.

3 keV $Ne^+ \rightarrow H$ or D adsorbed on W

A kinematic analysis indicates the structure is due to recoil followed by scattering.

The initial recoil angle, θ_r , was calculated from the observed peak positions using the relation:

$$\theta_r = \arccos\left(\frac{1+A}{2}\sqrt{\frac{E_r}{A}}\right).$$

The peak positions and inferred recoil angles are listed in the table.

 H^+ and D^+ energies and recoil angles 3 keV $Ne^+ \rightarrow W$

$E/E_0 \text{ at } \theta = 45^{\circ}$			
peak	Н	D	θ_r
main	0.091	0.17	45°
a	0.12	0.22	35°
b	0.15	0.26	27°

Note: It is not necessary to include an energy loss term for subsequent scattering of the recoil particle by a W atom since the large mass ratio gives $E_S \approx 1$ at small scattering angles.

Analysis of the collision geometry indicates adsorbed H isotopes are bound at bridge and hollow sites on the W surface.

Conclusions (1)

- H isotopes readily adsorb on sputtered W surfaces.
- H isotope exchange is rapid.
- There are at least two types of binding sites on the surface.
- H isotopes bound at high-coverage sites desorb about 3× more efficiently than those bound in low-coverage sites.
- Ion impact desorption cross sections for 1 keV Ne⁺ range from 0.1 to 3×10^{-16} cm².
- The cross section increases at oblique angles of impact

Conclusions (2)

- H isotopes recoiled from W surfaces have an energy distribution with structure that extends above the elastic recoil energy.
- The high-energy structure results from multiple collisions: recoil at a shallow angle followed by scattering from an adjacent W atom.
- Peaks in the high-energy structure are attributed to recoil of H isotopes adsorbed in bridge and hollow sites on the W surface.
- This effect will tend to enhance recycling from plasmafacing W surfaces and reduce energy transfer to the W substrate.
- Modeling of PSI on W components may need to take this effect into account.

LEIS spectroscopy consists of measuring the energy of ions reflected from a surface.

LEIS: low-energy ion scattering

$$2\cos\theta_s = (1+A)\sqrt{E_s} + (1-A)/\sqrt{E_s}$$

(for elastic scattering)

The DRS/LEIS instrument ARIES measures the energy of ions scattered or recoiled in the forward direction.

5-axis manipulator with heating, cooling, and remote sample handling

ARIES: angle-resolved ion energy spectrometer

The recoil and scattering kinematic relations are circles in polar coordinates.

$$2\cos\theta_r = (1+A)\sqrt{E_r/A}$$

$$2 \cos \theta_r = (1+A)\sqrt{E_r/A}$$
 $2 \cos \theta_s = (1+A)\sqrt{E_s} + (1-A)/\sqrt{E_s}$

center at $\sqrt{A}/(1+A)$

$$A = m_2/m_1$$
 $E_r = E_2/E_0$ $E_s = E_1/E_0$

frame